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Bell laboratories, Murray Hill, New Jersey 07974, U.S.A. 

(Received July 30, 1973) 

Computerized analysis of composite structures formed by the adhesive bonding of materials 
is presented. The adhesive is considered to be a part of a linearly elastic system whose 
components are individually characterized by two bulk property elastic constants. Solution 
is obtained by finite difference minimization of the internal energy distribution in a dis- 
cretized, piecewise homogeneous continuum. The plane-stress, plane-strain problem are 
considered, and yield displacement and stress distributions for the composite system. 
Displacement and/or stress boundary conditions are allowed. Acute contour angla are 
not allowed. This is the only restriction for otherwise arbitrary plane geometries. 

Results are presented for typical lap shear specimens as well as for a particular case of a 
butt joint in which a void exists in the adhesive layer. 

I .  INTRODUCTION 

The past thirty-five years have witnessed the expenditure of considerable 
analytic effort in an attempt to describe stress-strain distributions in com- 
posite structures formed by the adhesive bonding of materials. The original 
approximate efforts of Volkersen,' followed by Goland and Reissner' 
have been extended by the computerized and experimental analyses of 
numerous investigators. Harrison3 and Pahoja? among others, have recently 
added to the understanding of this rather complex problem. 

To gain some insight into this composite analysis as a whole and to provide 
criteria for further development of bonding materials and bonding techniques, 
assumptions have been introduced which are justified only by the analytic 
tools available to the investigator. Volkerson for example, treating simple 
lap joints, neglects stresses originating from bending moments. Goland and 
Reissner incorporate part of the latter but restrict themselves to adherends 
of the same material having identical length and thickness, with no stress 
variation within the adhesive a m .  
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208 J. PIRVICS 

With progress in analytic techniques, each succeeding investigator has 
been able to relax the number of assumptions previously required to obtain 
a solution. However, a general two-dimensional linear elasticity solution, 
which treats arbitrary geometries and materials with arbitrary boundary 
conditions, has continued to elude practical formulation and implementation. 

This work is an effort intended to provide such an analytic and design tool. 
The plane-stress, plane-strain and axisymmetric problems are solved by finite 
difference minimization of the internal energy distribution in a linearly 
elastic body. Displacement and stress fields are generated, given displacement 
and/or stress boundary conditions. Composites of materials treated are each 
characterized by their position in a grid space and by two independent elastic 
bulk property constants. Acute contour angles are not allowed. This is the 
only restriction for otherwise arbitrary plane geometries. 

Results have been obtained and are presented for typical lap shear speci- 
mens. A particular case of a butt joint in tension with a void included in 
the adhesive layer is also discussed. 

II. STATEMENT OF PROBLEM 

Consider a body, linearly elastic, piecewise isotropic, piecewise homo- 
geneous, simply or multiply connected, infinite in one linear dimension. 
Material properties and geometry are invariant in that dimension. Planar 
cross-sections remain planar under all conditions of stress and strain and 
thus define a two-dimensioned problem of plane stress or plane strain. Each 
material block is identified by coordinates and two elastic bulk properties. 

Subject the geometry under consideration to stress (normal, shear or both) 
displacement (one or two dimensional), or mixed boundary conditions. In 
the absence of body forces and thermal effects obtain displacement and stress 
distributions as functions of the two planar coordinates. 

111. METHOD OF SOLUTION 

The first law of thermodynamics for a body of volume V bounded by a 
surface S undergoing an adiabatic process expresses the internal energy U as 

u = JJJIntern.1 energy per unit volume 
V 

(1) 
Increase in internal energy due to body forces acting +Jss on a unit volume element 

V 

Increase in internal energy due to work performed by the 
body on its surroundings by means of its surface displacements 

S 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
5
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



DISPLACEMENT-STRESS DISTRIBUTIONS 209 

With u and w, displacements in the r (or x) and z (or y) directions respec- 
tively, Eq. (1) for an elastic body in plane strain in the absence of thermal 
displacements may be written in two dimensions as: 

U ( u ,  w )  = 
(1 - 2v) 

2n sJ (F,u + F,w)r d r  d z  - 211 (F,u + Fzw)r ds .  s (2) 

Where 
G = Shear modulus 
v = Poisson’s ratio 

F,, F, = Body forces acting on unit volume respectively in r and z directions 
F,, Fz = Surface forces acting on boundaries 

s = Contour coordinate 

Solution uniqueness requires U to be a minimum, and in particular that 

au 
au 
- = o  

and 

_ -  - 0. 
au 
aw 

These last two equations, together with boundary conditions for a par- 
ticular geometry form a set of two independent partial differential equations 
in two unknowns. The complexity of the expression for U, however, has 
frustrated attempts at a closed form analytic solution. Consequently, a 
numerical analysis approach is adopted, to be implemented on a digital 
computer. 

The two-dimensional continuum is replaced by a grid, and differentials are 
replaced by difference equations at each point of a mesh formed by ortho- 
gonal grid lines, Figure 1. The physical body under consideration is repre- 
sented within the confines of that mesh by straight line segments and in such 
a manner that all contours and changes in contour direction pass through 
grid points. Thus, if we consider Eq. (1) with l/r = 0, r = x and z = y 
we have the two-dimensional plane problem in Cartesian coordinates. In 
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210 J. PIRVICS 

CELL LINES _ _ _ -  
FIGURE 1 Rectangular grid. 

addition, if we retain I/r # 0 we gain axisymmetric (in 0) representation with 
rand z as the pertinent radial and axial coordinates. 

The grid mesh is further divided into cells of variable geometry to allow 
greater accuracy in representation, to facilitate the treatment of irregular 
boundaries, and to accept different material properties on adjoining sides 
of the grid lines. The analysis restricts itself to a finite set of twelve cells, 
Figure 2, a combination of which, up to a maximum of four, may be associ- 

FIGURE 2 Cell types (12 allowed). 

ated with any mesh point. A body can be multiply connected. Current geo- 
metries are restricted to contours which do not form acute angles because 
of the current selection of cell types (Figure 3). 

Equations (3a) and (3b) are written for each cell and summed appropriately 
to represent the energy derivatives for each grid point. 

Thus for an M x Ngrid 
U = C U , , , , k  i = l ,  . . .  M, j = l ,  ... N, k = l ,  . . .  C, 

C = number of cells associated with (4) i J , k  

i,j grid point 
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DISPLACEMENT-STRESS DISTRIBUTIONS 21 1 

( 5 )  

where the internal energy for each cell is 

U i , j , k  = u i , j , k ( u i j ,  U i j a ,  UijbY wijY w l j o ,  

It is a function of the u and w displacements at each point considered as 
well as values of the displacements u and w for each of two other points 
(indicated by subscripts a and b) associated with each cell. 

Minimization of the internal energy yields 
auijk c-- = o  

i jk  aurs 

x % k = O  I ’ =  1 ,  . . .  M , s = l ,  ... N 
ijk awrs 

ZERO DISPLACEMENT 
BOUNDARY CONDITION 

DISPLACEMENT 
BOUNDARY 

CONDITIONS 

- r  

FIGURE 3 Typical application with some of possible geometries. boundary conditions 
and material combinations. 

Thus for each point, each cell contributes information to six different 
equations (two for each of the three points involved by each cell). 

In the absence of body forces the internal energy for each point may be 
written as (Appendix) 

and its derivatives with respect to components of the placement vector 
become 

The above expression is condensed further, resulting in a general form 
which relates a vector of unknowns {mi} at thejth column to those at the 
j + 1 and j - 1 columns. The relationship is established by means of 
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212 J. PIRVICS 

matrices consisting of elements whose values are known and a vector of 
constants {R,} in the following form 

Here, {aj} is a vector of 2M unknowns 
[AI(@j} + [BI{@j-ll + [CjI{@j+~l = {RjI. (8) 

The solution is obtained by a column by column inversion t echn iq~e .~  
Given a proposed solution which relates adjacent columns of unknowns 

in the form 

one obtains recurrence relations which must be satisfied in the following form 
[Oj+ll = [-~jl-"cjl (1 la) 
[Ej+lI = [TI-'[{Rj} - [BjI{Ej>I (1 lb) 

where 

Knowledge of boundary conditions suffices to start the recurrence relations 
which in turn yield the solution vectors {aj}, and thus the displacement 
distributions. 

The stress distributions may be obtained by differentiation of the internal 
energy with respect to strain in the following manner. 

where or, is the [3 x 31 stress matrix and E , ~  is the [3 x 31 strain matrix 
for each point i ,  j. 

This differentiation results in a stress-strain relationship which in turn is 
converted to express stresses in terms of displacements solved for in Eq. (8). 

IV. APPLICATION 

The preceding analysis is implemented on a digital computer using pro- 
gramming language FORTRAN IV on an IBM 370/165 system. A [21 x 211 
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DISPLACEMENT-STRESS DISTRIBUTIONS 213 

basic mesh allows 441 points for a variable two-dimensional grid representa- 
tion of the geometry treated. This occupies 419,840 bytes of core on object 
deck execution. The routines incorporated can go to higher basic mesh sizes 
[25 x 251 before the matrix inversion algorithms have to be reexamined for 
efficiency, However, a high-density representation of this type would require 
extended computer memory and versions of the program in which use of 
intermediate scratch tapes becomes mandatory. 

Typical execution time of the object deck for a single lap joint geometry 
with no economy accruing from use of parts of the solution existing in 
computer memory from the immediately preceding case is 17 seconds of 
CPU time. 

Two particular geometries are considered to show applicability to typical 
geometries encountered in the adhesive bonding of materials. 

The plane strain problems of a lap joint and a butt joint in tension are 
considered and displacement and stress distributions throughout the two 
dimensional x-y plane (Figures 4, 5 )  are investigated. The adhesive is treated 
as one elastic component in a three-component composite structure. 

FlGWRE 4 Lap joint. 
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214 J. PIRVICS 

The first geometry of interest is that of a lap shear joint stressed in tension 
at one end at lo00 psi and held at the other to zero displacement. The detailed 
dimensions are shown in Figure 4. The adhesive is 0.004 inch thick and exists 
in an aluminum overlap region which is thirty thicknesses long. The investiga- 
tion also considered a complete butt joint as shown in Figure 5a. However, it 
was decided that to demonstrate the versatility of the analysis, a more 
informative treatment would deal with the simulation of a void in the 

cy = (000 lb/m2 
UNIFORM 

% TENSILE 
ZERO 

DISPLACEMENT 
END STRESS END 

CONDITIONS CONDITIONS 
u - w - 0  

NOTE : G, 2 G4 

I .  NOT TO SCALE 
2. Cx ,Cy POSITIVE *TENSION 

G 2 ;  G 3  

v, = u ~ = u ~ = u 4  
cry NEGATIVE+COMPRESSION 

( b )  
FIGURE 5 Butt joint. 

adhesive material (Figure 5b). The joint is again restricted to zero displace- 
ment (u and w )  at one end. At a distance of one inch a uniform tensile stress 
of lo00 psi is applied over the complete thickness extent (0.0625 inch). Two 
0.004 x 0.01 13 inch adhesive strips separated by a 0.040 inch void join the 
aluminum adherends. 

The materials are characterized by Poisson's ratio v and shear modulus G. 
The former was set at 0.33 for both and G for the adhesive was allowed to 
assume three values, 0.4 x lo', 0.8 x lo5 and 0.333 x lo'. The third value 
is that assumed for the aluminum and thus simulates geometry effects on 
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DISPLACEMENT-STRESS DISTRIBUTIONS 21 5 

a single material in response to boundary conditions. Conversely, this allows 
insight into the effects of material property mismatch. This mismatch in G 
of about two orders of magnitude is included to represent real life situations 
and demonstrate creation of transverse from imposed axial stress. 

V. RESULTS 

A. Lap joint 
The region of overlap and its neighborhood evidence the largest variations 
in displacement and stress. Here we define axial and transverse coordinates 
normalized with respect to the adhesive film thickness as q and < respectively. 
Figures 6 through 13 present selected information from the total available. 

Axial (w) displacements of grid lines defining the leading edge (q = 0), 
center (q  = 15) and trailing (q = 30) cross-sections of the overlap are 
presented in Figure 6. The positive displacement in the direction of the applied 
stress is given as a function of the transverse t coordinate. 

Three material combinations are examined. With G2 = 0.333 x lo’ the 
effect of geometry is observed as we study a single material in the conven- 
tional joint configuration. We observe in particular the departure from 
linearity at q = 0. The sudden area change and step geometry here give rise 
to high stress concentrations which the material tries to depress by local 
deformation. The restriction to displacement imposed at the boundary 
where q N - 223 is most noted in the q = 0 transverse plane. As we proceed 
to the center of the overlap linearity is recovered. The geometry effect of the 
composite plays a decreasing role with respect to w displacement as distance 
increases from the leading edge of the overlap. A slight deviation is again 
experienced at the trailing edge. The relative w displacement for the three 
transverse planes is greatest at what becomes the adhesive-aluminum interface 
g = -0.5. This represents the material accommodation to the high normal 
and shear stresses generated there. The effect of the presence of a material 
with different properties is presented by w displacement curves for G2 = 
0.4 x lo5 and G2 = 0.8 x lo5. First we note that the presence of the ad- 
hesive with a lower value of G2 significantly increases the displacement of the 
“top” versus “bottom” aluminum layer. The adhesive deforms to drop the 
high stress levels generated by the geometry at q = 0. The lower the value 
of G2 the greater is the displacement in the adhesive. The displacement within 
the aluminum “top” layer itself is essentially the same although the transverse 
planes move greater absolute distances due to the larger displacement of the 
5 = +0.5 interface. Another effect of increased adhesive stress accommoda- 
tion with decreased Gz is evident in the “bottom” aluminum layer in the 
q = 0 plane. Here aluminum displacement increases with increased Gz. 
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21 6 3. PIRVICS 

This is not the case when q = 15 or q = 30. Farther away from the overlap 
leading edge at < = -0.5 displacements increase with decreased adhesive 
shear modulus. The necessity for this seeming paradox becomes apparent 
when we look at the lower interface, and consider that rotation, i.e., bending, 

--- G2’0.4 X i05 Ib/ in2 
-.- G2=0.333 x to7 Ib/in2 
-G~p=0.8 x to5 I b / h 2  

2.0 

i .o 
k P  

a z 0.5 

a 
0 0.25 

w 
I- 

D 

0 
V 

m 

> 
m 

w c  

5 -0.5 
a w -0.25 

a 
I- 

- l . C  

-2.c 
I .o t .2 t .4 1.6 1.8 2.0 

DISPLACEMENT w x in.) 

FIGURE 6 Lap joint displacement profiles in overlap region. 

is taking place, Figure 7. The tensile load profile at the boundary q = + 223 
exerted on the “top” aluminum member aligns more easily with the “bottom” 
and exerts progressively greater influence on the “bottom” layer. As the 
adhesive attempts to decrease the stress level by displacement more and 
more of the aluminum becomes active in carrying the load. This phenomenon 
is accentuated by decrease in the adhesive shear modulus. 

G, = G3= 0.333 x i07 Ib/in.2 

NOTE: rx, cry POSITIVE* TENSION 
ux, my NEGATIVE=+COMPRESSION 
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DISPLACEMENT-STRESS DISTRIBUTIONS 217 

Planes q = 30 are displaced in w farther than q = 0 and q = 15. Therefore, 

Figure 7 exhibits the transverse displacement u of the two interfaces 
= 0.5 and 5 = -0.5 for three values of G ,  as a function of the axial 

the adhesive is in  tension in the q direction. 

A X I A L  COORDINATE 'f) 
-15 -10 -5 0 5 10 15 2 0  25  30 35 40 45 

v1=v2:v3=0.33 
NOTE: C x  , C y  P O S l T l V E ~ T E N S l O N  

cx, fly NEGATIVE+COMPRESSION 

G2'0.333 x to7 Ib/in2 
G2'0 8 x 1 0 5  Ib/in? 
62'0.4 x to5 Ib/in2 

FIGURE 7 Lap joint displacement profiles in overlap region. 

coordinate q. For a given material, the trailing portion of the overlap is 
depressed more than the leading segment. Furthermore, there exists a cross- 
over in the vicinity of the centerline for curves indicating upper and lower 
interface planes. This means that the adhesive is in tension in the leading 
and compression in the trailing position. This also indicates that under the 
existing boundary conditions transverse cleavage stress is exerted on the 
adhesive as the joint tries to align itself to a purely axial tensile load. 

The normal stress profile for the 4 = 0 plane is given i n  Figure 8. Here the 
positive t coordinate in the curves presented is terminated at five adhesive 
film thicknesses because of the rapid decay to zero stress in that direction. 
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218 J. PlRVlCS 

However, the full extent of the distribution is presented in the negative 5 
direction. Here, it is interesting to note that the positive profile representing 
tension is reversed and indeed reveals that the lower layers of the aluminum 
adherend are in compression. This comes about from the bending moment 
exerted by the attempt on the part of the “upper” adherend to align the line 
of action of the tensile force boundary condition. The maximum axial stresses 

d 

1 

I 

C 

- 1  

4F -2 

a z - 4  
n 

W 
t- 

a 
0 
0 
V 

W 
ln 

W 

ln z 

t- 

a 
> -8 

a a 

- I E  

UU NORMAL STRESS x ( IO3 lb / i n? )  
I 

- 4  -2 v 

- ALUMINUM 

- 
ALUMINUM 

- 

G2 = 0 8 X 105 lb/in2 
G 2 = 0 . 4 x  to5 lb/in2 -- - 

-.- G2 = 0 . 3 3 3  x 107 Ib/ in2 

C:O I 2  in 
G , = G 3 = 0 . 3 3 3 x  to7 Ib / in*  
u , = u 2 = u 3 = 0  33 

NOTE: crX ’ ( T ~  POSITIVE *TENSION 
(T, ,(Ty NEGATIVE=+COMPRESSION 

FIGURE 8 Lap joint normal stress u,, profiles at q r: 0. 

are generated in materials with higher values of G2 and occur at the ( = -0.5 
interface. The effect of rapid area transition is most apparent in  the pure 
aluminum geometry. Indeed, the maximum stress level here increases by 
almost a complete order of magnitude relative to the average applied stress. 
The effects of the absence of gradual area transition and creation of stress 
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DISPLACEMENT-STRESS DISTRIBUTIONS 219 

concentrations become apparent. The adhesive-adherend interface, even with 
displacement accommodation of stress concentration is faced by a stress 
concentration in the order of six with respect to the imposed load. The effect 
of lowered adhesive shear modulus with respect to that of the adherends is 
seen in the 30 percent reduction in maximum stress in the 5 = -0.5 plane. 
Note in particular the extent and magnitude (-4000 psi) of the stress reversal 
for all material combinations. 

ALL CURVES 
G p  ~0.4 x 105 Ib/in? 

6 lr 
G, = G3 ~ 0 . 3 3 3  x lo7 Ib/in? 
V i =  V2=  U3 = 0.33 

NOTE : crx , cy POSITIVE *TENSION 
ax, cry NEGATIVE+COMPRESSION 

I AXIAL COORDINATE 71 

I-OVERLAP REGION- 

FIGURE 9 Lap joint normal stress uy profiles in overlap region. 

Figure 9 reveals the axial variation of the by stress for the three axial 
planes < = k0.5 and < = 0 when the lowest shear modulus adhesive 
material is used. It is seen that the top interface is mildly loaded, reacts to 
the geometry within a five film thickness (0.020 inch) region at either end 
of the overlap and approaches the boundary condition stress within ten film 
thicknesses (0.040 inch) of the overlap trailing edge. The adhesive centerline 
reveals a leading compressive followed by a trailing tensile region previously 
revealed in Figure 7. The adhesive film undergoes lateral displacement and 
rotation and in the process undergoes changes in stress mode. The elevated 
stress levels are attained in the “lower” adhesive adherend interface and 
continue as much as 15 film thicknesses (0.060 inch) in front of the leading 
edge of the overlap. They extend also into the axial direction of the adhesive 
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220 J. PIRVICS 

but are mostly in evidence over the first 10 film thicknesses. Figure 9 thus 
reveals the extremely high levels of stress attained, at rapid geometric step 
area transitions, in both the adhesive and the adherend and directs our 
attention to their localized nature. 

NORMAL STRESS a; ( 10' Ib/in?) 
- 1  2 -08  -0.4 
4 

2 

1 

0 

- 1  

* -2 w 
t- 

2 
a 

0 g-4t V 

0.4 0.8 1.2 1.6 2.0 
l ~ l ~ l ~ l ~ ' 1  

G2 ~0.4 x to5 Ib/in2 

G 2 = 0 . 8 x  !05 Ib/in2 

/ / / Y 
c = 0.12 in. 

u,: u2 1 u3 ~ 0 . 3 3  
G,= G3= 0.333 x 107 lb/in.* 

NOTE: Ux,Uy POSITIVE*TENSION 
u,, cry NEGATIVE+COMPRESSION 

FIGURE 10 Lap joint normal stress ox profiles at 9 = 0 

The transverse normal stress ox created by rapid area transition and 
material property variation is displayed in the curves of Figure 10. The 
maximum stress is attained within the adhesive layer at the leading edge 
of the overlap. Again, the lower the shear modulus of the adhesive the lower 
the elevation in stress. Note that most of the adhesive carries some of the 
load and that the aluminum also sustains tensile as well as compressive 
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DISPLACEMENT-STRESS DISTRIBUTIONS 221 

transverse stresses. The change in transverse distribution of the ox stress is 
compared for the same adhesive material in curves for the q = 0 and tj = 30 
planes. It is evident that the upper aluminum layers of the bottom adherend 
play an increasing load carrying capacity role for the ox component as we 
progress to the trailing edge of the overlap. Figure 11 displays the axial 

A ax 
1.6 - 

c =0.12 in. 
G, = G 3 = 0 . 3 3 3  x to7 Ib/in2 
Vq Vz= ~3 ~0.33 ,G2 =0.4 x105 Ib/in? 
:ax,uy POSITIVE=+ TENSION 
a,, by NEGATIVE +- COMPRESSION 

U 

E 
0 z 

I - 0 . 8  - 

-1.2 -OVERLAP REGION - - 
- 

-!.6 - 

FIGURE 11 Lap joint normal stress ux profiles in overlap region. 

variation of the transverse stress ox for the two interfaces and for the plane 
in the adhesive for which maximum stress is created (t = -0.25). It is seen 
that regions of high stress exist within 10 film thicknesses of the overlap in the 
leading edge and 5 in the trailing edge neighborhood. The reversal of stress 
from tensile to compressive is noted again as it occurs within a few film 
thicknesses prior to the centerline of the overlap. 

The shear stress component distributions are explored in Figures 12 and 13. 
Once again, it is observed that at q = 0, maximum shear develops for the 
pure aluminum geometry. Stress elevation by a factor of five with respect 
to the average stress applied is created in the G2, v 2  material area. Lowering 
the shear modulus drops the level to that which is applied. The maximum is 
achieved at about a quarter of a film thickness beneath the G,, v 2  material 
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222 J. PIRVICS 

centerline and not at the interface with the G,, v ,  material. The presence of 
the lower modulus adhesive decreases the stress levels imposed on the 
remainder of the structure. 

Figure 13 traces the axial behavior of the shear stress for aluminum and 
the lower-shear modulus adhesive in the two interface and highest stress 

-R 

SHEAR STRESS axy (i03 Ib/in?) 

- 

0 

ALUMINUM 

0 
0 

W 
v) 

W > 
a 

z" -a 
a 
K 
I- 

t=0.004 in. I ' G  3 ,u 3 I L t  
c: Q.i2 in. 

G,=G3=0.333 x 10' Ibhn.2 
ul= u2 = u 3 = 0.33 

NOTE:ax ,ay POS~T~VE=SSTENS~ON 
a,, r,, NEGATIVE+COMPRESSION 

- 0 -  G2=0.333xf07 W i n 2  - 0280.8 x lo5 Ib/in? --- G2=0.4 x lo5 Ib/in? 

Lap joint shear stress or,, profiles at q = 0. 

level planes. It is seen that the ability of the adhesive to accommodate stress 
levels by displacement results in strikingly lower maximum stress levels and 
essentially uniform shear load throughout the overlap extent. It is important 
to note that these interior region stress levels are higher for the adhesive 
than for the corresponding stiffer aluminum by about a factor of two. This 
behavior illustrates the capacity of the lower G material to bring more of 
itself into a load carrying capacity role. In both material instances maximum 
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DISPLACEMENT-STRESS DISTRIBUTIONS 223 

shear stress is experienced within five thicknesses of the leading edge of the 
overlap. 

----- G2: 0.4 x lo5 Ib/in2 ----I ......I. - 
G2:0.333x1071b/in? 

NOTE:ax, a,, POSITIVE *TENSION 
. Cx, C y  NEGATIVE+COMPRESSION 

W T  
AXIAL 

COORDINATE 7) 
4 OVERLAP REGION - 

- 2 L  
FIGURE 13 Lap joint shear stress us,, profiles in overlap region. 

B. Butt joint-Void in adhesive layer 

The particular geometry considered is symmetric about its axial and trans- 
verse centerlines. Most of the displacement and stress variations occur at the 
material and geometric discontinuities occasioned by the adhesive and by 
the void. We therefore focus our attention on the region which includes the 
adhesive and extends to the axial centerline of that void. 

Figure 14 details the displacement of points in the body when it is subject 
to axial tension. Here the solid grid represent the unstressed state and the 
intersections of the dashed grid represent ends of displacement vectors 
from these points when the assembly is stressed. Note that referred to the 
solid grid scale, the scales used for displacements u and w are respectively 
two and one orders of magnitude larger. Thus the dashed grid displacement 
is exaggerated as well as biased in the representation of Figure 14. 

Considering the w displacement, we see that most of it is generated by 
extension of the adhesive layer (in the order of 0.5 x 10-4inch for the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
5
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



224 1. PIRVICS 

0.004 inch film). The total aluminum contributes essentially the same ex- 
tension in w. 

The transverse deflection is negligible in the main body of the aluminum 
although closer to boundaries it does become noticeable. The most dramatic 
transverse displacement is noted in the contraction of the adhesive layer. 
Here the transverse adhesive motion is well over an order of magnitude 

Y I  = 

i INCHES)  

FIGURE 14 Butt joint-void in adhesive layerdetail of displacement grid. 

larger with respect to that of the aluminum. Thus, the purely axial tensile 
boundary condition on the aluminum is translated into transverse stress as 
well by aluminum boundaries. The latter see the adhesive as a weak com- 
ponent in the assembly and act to restrict motion of the adhesive at the 
interfaces. The “hourglass” or characteristic “necking down” of the adhesive 
comes about. Note that within about five film thicknesses the transverse 
displacement effect of the adhesive is not discernible. This decrease in effect 
becomes more pronounced as we proceed toward the axial centerline. 
Although difficult to represent graphically, the computed results indicate 
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DISPLACEMENT-STRESS DISTRIBUTIONS 225 

that the displaced void is not exactly rectangular, tending toward the ellip- 
soidal. This effect is washed out within a few film thicknesses from the void. 
This would account for variations in stress, and indeed transition from the 
tensile to the compressive mode for the ox stress component. 

Selected curves representing the two normal stresses ax and a, are presented 
in Figure 15. Again, we see that within five film thicknesses (0.020 inch) of the 

CTx TENSION 

1.0 CM =I000 PSI 

I .O CM = 1000 PSI 
oi, TENSION 

G I  5 0.33 x lo7 Ib/ in2 
G2 E 0.8 x lo5 Ib/in2 
v ,  5 0.33 

FIGURE 15 Butt joint void in adhesive layer normal stress ox & uU ( x  lo3). 

adhesive-aluminum interface the transverse component ax is no longer felt 
and ay has returned to just about the uniform average oy load imposed 125 
film thicknesses (0.5 inch) away. The stress distribution in the adhesive 
region has to be such that the area integrated distribution satisfies force 
equilibrium in the y direction. Therefore, the ay magnitude has to increase 
interior to the adhesive and immediately adjacent to it in the aluminum. 
As distance increases away from the interface, the axial load begins to be 
shared more uniformly by the aluminum. 

15 
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226 J. PIRVICS 

The transverse component a, is always positive in the adhesive region. 
This is due to the Poisson’s ratio effect as the adhesive attempts transverse 
contraction when subject to axial load as it is simultaneously restrained at 
the interfaces by the more rigid aluminum. The aluminum on the other hand 
is not so restrained and successive axial planes compress their neighbors 
creating the increasingly negative components in the vicinity of the void. 
The effect decreases in the axial direction away from the void. 

VI. CONCLUSIONS 

1) The computerized finite difference minimum energy approach has been 
demonstrated to be a viable technique in the description of adhesively bonded 
composite structure behavior. 

2) Application to standard lap shear geometries and void-included butt 
joints, in addition to providing insight into these particular problems, 
indicates the flexibility of the analysis and predicts applicability in wider 
areas of interest. 

3) Detailed exploration into the transverse and axial displacement-stress 
behavior of the assembly is a practical necessity for understanding of total 
composite response. 

4) The demonstration of the variety of effects generated by material 
property differences, by boundary conditions and by geometry dictate 
detailed exploration for each in composite structure analysis. 
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APPENDIX 

Consider a point i, j interior to a given geometry. This point is surrounded 
by cells of type 1, 2, 3 and 4. The energy formulation and its derivations 
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DISPLACEMENT-STRESS DISTRIBUTIONS 227 

must be written for each cell and then summed to represent these values for 
the grid point. 

Formulation details are prescribed here for cell type 1, Fig. 2. With: 

3 + uij - U i - l j  wij - Wi. j -1  + (dilation term) 
rij Axi-, AYj- 1 
uij - U1,j- 1 wij  - wi-1,j + (rotation term) 

AYj- 1 Axi- 1 

1 1 -, b = -  (grid spacings) 
A%- 1 AYj- 1 

k = l  
rij = radial or x coordinate distance to ij point 
G1 = shear modulus of material associated with cell 1 
v1 = Poisson's ratio of material associated with cell 1 

Asij = contour distance over which a force F may act. 

The internal energy is written in terms of displacements u and w as: 

The derivatives of the internal energy with respect to each of the six dis- 
placements are : 

- -  
auij (1 - 2v1) 

+ (1 - 2vl)oijkb ]:b - - 2nF2riiAsij ('43) 

-- ItGloi j k r i  j auij, - -  
awi-l,, 2b 
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228 J. PIRVICS 

aUijk - nGlai]krij 

aui,j- 1 2a 

- v,eijk - (1 - 2vl)(wil - 

A more concise representation is obtained by generalizing the above formula- 
tion in terms of matrix notation. Define a 5 x 6 matrix Q,, and a six element 
vector qt such that: 

, a, 0, -0, -6, 

9 0, -4 0, 

+ a, b,  a, 0, 

> 0, 0, 0, 

{Q> = 

Then Eq. (Al)  may be written as 
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